I need help writing an essay
Thursday, September 3, 2020
Dr. Jekyll and Bride Essay
Among the numerous works offered over the span of this semester, a couple of stand apart as especially charming and significant while some neglect to meet this desire. Accordingly, my preferred work this semester would be Robert Louis Stevensonââ¬â¢s ââ¬Å"The Strange Case of Dr. Jekyll and Mr. Hydeâ⬠while my least most loved is Stephen Craneââ¬â¢s ââ¬Å"The Bride Comes to Yellow Sky. â⬠My first purpose of examination with regards to these works is the class. This contributed extraordinarily to my solid warmth for Dr. Jekyll and Mr. Hyde. I appreciate the gothic, puzzle kind, particularly the strategy where a few characters portray the story. This assorted variety in perspective gives the peruser, myself, different points of view on which to assess the activity. Notwithstanding the class and procedure, I was captivated by the storyââ¬â¢s subject. The inward battle of good and wickedness is something that is inalienable in all individuals, and genuinely isolating an individual into a ââ¬Å"goodâ⬠half and a ââ¬Å"badâ⬠half is a fantastic method to portray this division. I likewise delighted in the coming full circle resolution that the manifestation of abhorrence can gradually invade the tendencies towards great in an individual. ââ¬Å"The Bride Comes to Yellow Skyâ⬠is a case of a progressively target style story expounded on the American west when the new century rolled over. The subject of the story centers around the finish of the western gunman period for the more humanized practices of the East. The hesitance of the lady of the hour is obvious as she rides the train, yet even the attire of Yellow Skyââ¬â¢s just holdout, Scratchy Wilson, is a result of New York. The pity of the loss of a period is obvious, which, thusly, makes me tragic. What's more, while the two stories were of a genuine sort, the earnestness in Bride is a great deal more superfluous. The characters are strangely genuine; it appeared to be way bizarre as observed by the pictures of death and rot. I comprehend that this supplements the topic, yet I didn't appreciate it as I did the riddle.
Saturday, August 22, 2020
An Extreme Form Of Relativism Which Asserts Religion Essays
An Extreme Form Of Relativism Which Asserts Religion Essays An Extreme Form Of Relativism Which Asserts Religion Essay An Extreme Form Of Relativism Which Asserts Religion Essay Supreme Relativism: This is a most extreme signifier of relativism which attests that all realities are equivalent and entirely subordinate upon some outside or logical components. Most signifiers of relativism are non this extraordinary. ( Postmodernism.com ) in spite of the fact that the Postmodernism dictionary has no scriptural back unit of ammo or even a profound affiliation, I think they simple and just indicate Absolute truth. Unadulterated truth is the accept that a higher being made and put on every single people a chest a rundown of core esteems and certainties. For delineation, killing children or taking from you female guardians satchel, are two things the vast majority would clutch be awful workss. However, presently a twenty-four hours s individuals are be givening to tilt towards various attitudes on truth. A stuff world depends on what an individual and contact, feel, and see. Since God can non be seen a decent aggregate of individuals accept that reality as to maker and such expert common forces do non be. This is only one signifier of relativism.Wikipedia characterizes pluralism as, Pluralism is utilized, much of the time in various ways, over a wide extent of subjects to indicate an assorted variety of positions, and stands in protection from one individual assault or strategy for perusing . Pluralism can be simple characterized and actually intricately characterized. Housing to the rudimentss, I accept, is cardinal into explaining such subjects. Relativism and pluralism about match with one another regarding the matter of truth. Pluralism, accepting that reality can hold at least two different ways of screening, when relativism just accepts that every single cultural gathering can hold its ain situation on truth. Moral relativism is the position that moral measures, profound quality, and spots of right or mistaken are socially based and thus competent to an individual s single pick. ( Postmodernism.com ) Cultural Relativism has a to cover more with social/cut and topographic point position of truth, planning a people position of truth relies upon where and when he lives. For outline, a grown-up male that experienced childhood in the Baptist church in sou-east joined regions with likely have faith in an essential fact of the matter, when a grown-up male turning up in no congregation in the nor-east will probably hold a social relativist position. 2. Would it be a good idea for us to be doubting about everything? Bing distrusting can be a fortunate or unfortunate thing. To answer the request, should we be distrusting about everything, my answer would be no and hears why. In unremarkable life rationale is utilized, and being doubting about something that is coherent has neither rhyme nor reason. For outline, 2+2 = 4 is coherent, and needs no ground for skepticism. A ground to be doubting would be if a C understudy got a 100 on there finishing up test, so the teacher ought to be distrusting. Populating existence with a distrusting position can rescue you from some troublesome things. For outline, being distrusting of your sweetheart who leaves town consistently and holding no ground for it. Conceivably be doubting of confidence, really occurring out what this life is around and how it became. Being distrusting of something like this is something worth being thankful for. So should we be distrusting about everything, the answer is no, simply non intelligent things. For an incredible duration I ve attempted no to be too much distrusting of what individuals state. For a couple of ground, one being that the greater part of the clasp what individuals state is non all the way evident. I attempt to be obliging and non do individuals look like nitwits since I m doubting of what they are expressing for representation, As I m addressing one of my crew couples and they state hello I have Arizona taking a gander at me for baseball, when reasonably there s is no way that s conceivable, on the other hand of oppugning him and being a doubter I only permit it travel and non permit it sway my relationship with that person. Bing distrusting can do you resemble a shrewd a lick or extremely arrogant in some condition of affairss. Bing distrusting is non ever important, through this last sections I have given you a couple of various condition of affairss where being a cynic and when non to one. As life trucks on, look to no when it is a great idea to be a cynic and when its non great. You do nt require to be doubting about everything! 3. I do nt accept that there is a God, is at that place any relevant proof that He exists? 'There are numerous approaches to turn out God s being, however I m going to focus on three. The fitting proof behind DNA, The Moral Argument, and the Anthropic Principle, are three recognizable methods of turn trip God s Existence. The fitting proof of Deoxyribonucleic corrosive can bolster the being of God without anyone else. DNA succession is each piece requested as etymological correspondence, which infers plan. Everything that presentations indicated multifaceted nature is structured. Deoxyribonucleic corrosive shows multifaceted nature. Along these lines, DNA was structured. ( Henson Notes pg. 4 ) . Essentially put that such a perplexing thing, for example, Deoxyribonucleic corrosive could non simply begin being, only as phonetic correspondence did nt only begin the human encephalon. Language has a plan and every single child must larn there ain etymological correspondence. Simply as etymological correspondence has a structure Deoxyribonucleic corrosive should other than hold a plan. Another announcement includes Mount Rushmore, Does Mount Rushmore has a characteristic or a savvy cause? Does DNA hold a characteristic or a wise reason. ( Henson Notes pg.4 ) . Anybody can perceive that Mount Rushmore was no n brought about essentially however rather by an astute inside decorator. Same is for DNA. Deoxyribonucleic corrosive is one of the most intricate things in all the presence and to guarantee that it is by circumstance is silly. My following contention exchanges with the Anthropic Principle, The presence is finely tuned so as to draw out life. Minute Changes would destruct all Life. This suggests deliberate and knowing plan. ( Henson notes pg. 3 ) This simply implies God put the Earth and definite whole of vast off from the Sun, Moon, ect.. with the goal that life could go on Earth. In the event that we were 100 pess closer to the Sun we would fire alive and in the event that we were 100 pess further from the Sun we would halt abruptly to expire! This to me unmistakably so a Godhead and an immediate aim for why the Earth is the place it is, and proofs there must be a God. The Moral Argument is one of much contention and struggle. Each ethical statute has an ethical law provider. There is a cosmopolitan good law. In this manner, there is a Moral Law Giver. Henson notes Pg.4 ) . In the event that one can gain a nonbeliever or rationalist to perceive there is an ethical statute in this presence, there is no difficult this announcement. The activity is that most nonbeliever conviction truth is just applicable to what every single individual accepts. To verification that there is an ethical statute one can state, Is executing darlings quite well, is ransacking a guiltless individual good, and is annihilation well indeed. The vast majority would express no and that there is a cosmopolitan Law. Also, that Law must be made by a higher being. 4. Is the Bible basically marvelous accounts? Numerous individuals now-a-days are doubting of the authenticity of the book of scriptures. Is the Bible simply a bunch of legends, or is there truth behind every one of these stories. Indeed, even without religion in what the holy book says, there are as yet solid realities and delineations of why the Bible is valid. Before I get into inside informations, I would preeminent wish to express that the holy book had satisfied visualizations, from the virgin birth to the demolition of Rome. Every single occasion had either verifiable or stunning demonstrate of it go oning. For delineation, Some clasp before 500 B.C. the prophesier Daniel broadcasted that Israel s hotly anticipated Messiah would get down his open service 483 mature ages after the issue of an order to recreate and reproduce Jerusalem ( Daniel 9:25-26 ) . He farther anticipated that the Messiah would be cut off, or slaughtered, and that this occasion would take topographic point preceding a second decimation of Jerusalem. Rich confirmation shows that these guesses were completely satisfied in the life and torturous killing of Jesus Christ. Other than anticipations being satisfied the holy book the soonest approximative day of the long periods of being composed so any Homer, Plato, Aristotle books. The Bible was composed somewhere in the range of 50 and 100 A.D. Our soonest discoveries of the holy book arrived in a section from 125 A.D. also, the total NT in 350 A.D. In contrasting with Plato s Tetralogies, which was composed somewhere around 400 B.C. , however was preeminent found in 900 A.D. No 1 vulnerability the authenticity of Plato s book reason for the clasp between it unique creation and first discoveries, yet for some ground this announcement neutralizes the good book? How accomplishes that work! In the event that Numberss dazzle you so tune in to this reality, There is 5,686 figure of composition for the holy book. The Tetralogies just have 8! In the event that that s non sufficient demonstrate for the Bibles approval I do nt cognize what is. 5. For what reason must God be a vast being? Why ca nt at that spot be numerous Gods, and why ca nt God be constrained ( free idea, limited Godism, maltheism ) ? ( No stanzas use rationale! ) The use of rationale can elucidate to anybody what God is and what God is nt. For one thing, God must be endless. Everything that has a start has a reason, the presence has a start, and thus something needed to do the presence. On the off chance that we left this announcement numerous requests would non be offered an explanation to why God must be limitless. To elucidate farther, the presence was caused, something needed to do it, the solitary legitimate slim
Friday, August 21, 2020
Nursing Diagnosis Essay -- Clinical Reasoning Cycle
J.P., a multi year old female, presents to the Emergency Room on March eighteenth. She has a past clinical history of cervical malignant growth, atheroembolism of the left lower furthest point, fistula of the vagina, fringe vascular malady, neuropathy, glaucoma, GERD, misery, hypertension, ceaseless kidney illness, and sickle cell frailty. She gripes of right lower furthest point torment joined by weariness, a diminished hunger, expanded work of breathing, consuming on pee, and diminished pee yield for three days. On confirmation, a total physical appraisal was performed alongside a blood and metabolic board. The evaluation uncovered numerous positive and negative discoveries. J.P. was certain for dyspnea and a gainful hack. She additionally was sure for dysuria and hematuria, however negative for flank torment. After close assessment of her integumentary and musculoskeletal framework, the inspector found a glossy firm shin on the correct lower furthest point with +2 edema supplemented by serious agony. A lot of standard vitals were likewise performed uncovering a circulatory strain of 124/80, beat of 87 beats for every moment, oxygen immersion of 99%, temperature of 97.3 degrees Fahrenheit, and breath of 12 breaths for each moment. The blood and metabolic board uncovered a few anomalous labs. A red platelet check of 3.99, white platelet tally of 22.5, hemoglobin of 10.9, hematocrit of 33.7%, sodium level of 13, potassium level of 3.1, carbon dioxide level of 10, creatinine level of 3.24, gluc ose level of 200, and a BUN level of 33 were the irregular labs. After a careful assessment, J.P. was determined to have a profound vein thrombosis (DVT). ââ¬Å"DVT grows frequently in the legs however can happen likewise in the upper armsâ⬠¦Ã¢â¬ (Ignatavicius and Workman, 2013). Due t... ...analyze that cause physical torment, yet in addition issues that can cause enthusiastic, profound, and psychosocial injury. After the execution of the expressed intercessions, the patient gained physical and passionate ground towards the previously mentioned objectives. The above objectives were met, yet surpassed desires for the patient and the medical attendants who gave care. Works Cited Ackley, B. and Ladwig, G. (2010) Nursing determination handbook:an proof based manual for arranging care. Maryland Heights, MO: Mosbey. Ignatavicius, D. D., and Workman, M. L. (2013). Care of Intraoperative Patients. Clinical careful nursing: tolerant focused community care (seventh ed.). St. Louis: Elsevier. Taylor, C. (2011). Prologue to Nursing. Essentials of nursing: the workmanship and study of nursing care (seventh ed.). Philadelphia: Wolters Kluwer Health/Lippincott Williams and Wilkins.
Monday, June 15, 2020
Organizational Development Research Paper - 3850 Words
Organizational Development on OD Horizon (Research Paper Sample) Content: Merger of Organization Design and Organization Development:A Qualitative study from the Perspectives of ChangeManagement and OD HorizonBy[Name of Student][Faculty Name][University Name][Date]SignatureIntentionally left blankCHAPTER 2: LITERATURE REVIEWOrganizational LearningA learning organization is one that is structured to facilitate organizational learning. Organizational learning involves gathering and processing information usually within an infrastructure of information systems. According to LaMarsh (2005), companies must learn how to change, and education and training should become the foundation for a constantly learning environment, one that will support continuous change (p. 137). Learning organizations usually have strong organizational cultures as the shared beliefs and assumptions characterized by these strong cultures influence how members gather, process and share information. Finally, learning organizations depend heavily on effective leadership to cr eate a vision for a successful learning environment and to lead members of the organization in that direction. In a study of smarter organizations, McGill and Slocum (2012) identified five core behaviors that facilitate organizational learning: * Openness * Systems thinking * Creativity * Personal efficacy * EmpathyAccording to Stata (2009), "the rate at which organizations learn may become the only sustainable competitive, especially in the knowledge intensive industries" (p. 64). He suggested that the challenge is to find ways to accelerate organizational learning while building consensus for change and facilitating the change process. Inherent in the development of organizational learning, therefore, is the successful implementation of organizational change. Organizational learning is facilitated when there is an understanding of the changes occurring in the external environment and then adaptation of the beliefs and behavior within the organization to make them compatible with t hose changes (p. 67). These concepts are not new to OD, however, because, according to Hendry (1996), "the theory of organizational change grew out of organizational learning theories through the application of action research methodologies to organizational problems" (p. 622).It is also possible to associate Kurt Lewinà ¢Ã¢â ¬s field theory of changeà ¢Ã¢â ¬unfreezing, change, and refreezingà ¢Ã¢â ¬with some undercurrent of organizational learning. The learning occurring between the unlearning i.e. (unfreezing, when there is a motivation to change), and the learning that enables the organization to change then refreeze at the newly learned level. The validation of human capital, therefore, is not a new concept to OD. Since its inception, OD has been based on a set of values beliefs and assumptions that promote a humanistic framework. Beyond the capacity to learn, several OD and change management practitioners have come up with the concept of the organization being built to change or designed to learn. This concept has led to the examination of OD from the perspective of design.Organization Design and Design SciencesOD from a design perspective is not simply another attempt to integrate OD and come up with another intervention strategy. The concept of OD from the perspective of design science refers to a perspective that goes beyond integrating to a paradigm shift in the way organizations in the 21st century will need to be structured. Twenty firstà ¢Ã¢â ¬century organizations will need to consider structural changes that are not confined to the physical, but rather changes that relate to how the organization is designed and developed. Lawler and Worley (2005) explored a related concept in their bestseller, entitled Built to Change, one that considers the idea of organizations as being built to change. Robbins (2005) suggested that organization design is concerned with constructing and changing the structure of the organization so that it could ach ieve its goals. Even earlier, Galbraith (2003) described organization design as a continuous decision process designed to bring about coherence among structure, strategy, and people within the organization.Design HistoryIt is not clear where the concept of organization design originated. Galbraith (2003) suggested that design is not new because every organization is designed. Simon (1996) claimed that everyone is engaged in design when they are working towards changing existing situations into what they want them to be. Churchman (2008) stated that design was derived from teleological or goal seeking behavior, and saw design as synonymous with actions that lead to the attainment of goals. Churchman also believed that knowledge inquiry is the essence of design, design in this context being thinking behavior that conceptually selects among a series of alternatives in order to figure out which objective leads to the desired goal or set of goals and to arrive at these sets of goals. Moh rman (2007) credited the earliest references to organization design as originating with the work of Herbert Simon, who believed that organizations were human designs because they were created by humans to achieve their goals and purposes. Based on Simonà ¢Ã¢â ¬s theories, the responses to change 21st-century organizations are currently experiencing and their continued inability to achieve organizational effectiveness, it is clear that for the most part the design elements of organizations have been overlooked (Simon, 1996). Romme (2003) also based his approach to design science on the work of Simon (1996). In his treatise, Romme stated that the idea of design "involves inquiry into systems that do not yet exist- either complete new systems or new states of existing systems" (p. 558). He further suggested that design is characterized by its emphasis on solution finding and proposes a framework for utilizing design sciences to design and develop organizations toward more humane, pa rticipative and productive futures.Van Aken (2007) also credited the seminal work of Simon (1996) and SchÃÆ'n (1998) for the emergence of design sciences and agrees with Gresov and Drazin (2007) that design science owes much to systems thinking. He advocated that the design approach is a process that must be part of the repertoire of every OD practitioner. Indeed, the concept of equifinality, which was first defined by von Bertalanffy (2002) in his definition of systems theory, has also been utilized to define organizational design as it relates to the creation of organizations to achieve high performance. The essence of organization design, therefore, requires that in order to improve organizational performance and effectiveness, which is essentially realizing and achieving the goals of the organization as previously stated, there must be some emphasis on designing the organization initially to achieve these goals, or redesigning the organization to attain new goals that the organ ization may have set (Mohrman, 2007). According to Weick (2010), "proper organizational design could therefore make the difference between having an effective well-run organization and one having recurrent crises and organizational inefficiencies" (p. 369). Weick examined organization design as improvisation. He suggested that one of the ironies of organization design is that its effectiveness makes redesign and learning more difficult, and that continued effectiveness in a changing environment, therefore, requires continuous redesign (p. 376).Current PracticesBate, Khan, and Pye (2010) suggested the principle of culturally sensitive restructuring. They explored a relationship between culture and structure in order to put people back into organization design (p. 199) by bringing design and development together they believed it is possible to blend structure and culture into a single cultural form so as to initiate significant organizational change. They created a change intervention strategy that consisted of a four-phase change model that sought to reframe the culture-structure relationship, enabling the organization to move towards transformational change. In their study, Bate et al. (2010) proposed a "culturally sensitive approach to organization design by bringing hard and soft changes together, harnessing organization design and organization development in the service of fundamental corporate transformation" (p. 197). They highlighted the uniqueness of the approach with their acknowledgment that "very few studies have previously analyzed the complex relationship between organization structure and culture or sought to elaborate any sort of coherent methodology or process for bringing the two spheres together" (p. 198), and cited an earlier study by Anthony (2009) as one of the few exceptions. The work of van Aken (2007) veered away from the purely cultural aspect as it attempted to align business and human values in the organization. In an article, van Ake n (2007) suggested that a design science approach to OD could result in new perspectives as to how OD interventions might bring about more effective organizational change.CHAPTER 3: METHODOLOGYThis chapter delineates the research methods that were used in this study, the purpose of which was to understand, through interviews with practicing consultants, the current usage of organization development (OD) and organization design, and describe how their integration affect change intervention strategies in the turbulent 21st-century environment. According to Mohrman (2007), although the end vision is not yet fully described, the answers obtained via the exploration of the incorporation of OD and design, both theoretically and empirically, will advance both fields by suggesting badly needed solutions for organizations who must improve their performance and effectiveness while focusing on the value of its huma...
Sunday, May 17, 2020
Operation of the power transformer. - Free Essay Example
Sample details Pages: 32 Words: 9570 Downloads: 1 Date added: 2017/06/26 Category Statistics Essay Did you like this example? CHAPTER 1 INTRODUCTION 1.1 Project Overview A factor of main economic importance and safety in electrical utilities and industrial customers of electricity is dependent on the operation of the power transformer. In the current economic situation, most of the supply utilities and industries tighten their control on production spending of capital and make savings in maintenance as well as ensuring the reliability of electricity supply. A power failure can increase the electrical loads. Donââ¬â¢t waste time! Our writers will create an original "Operation of the power transformer." essay for you Create order These loads will defer purchasing additional plant capacity and can cause the stress on the transformer increases. Thus, monitoring should be conducted to ensure the reliability of the net effect of the thermal voltage, electrical and mechanical service requirements brought about by the increase. Regular sampling and testing of insulation oil taken from the transformer is a valuable technique in the preventative maintenance program. The transformer can be used longer if a proactive approach undertaken based on the transformer oils condition. During an operation of a power transformer, transformer oil is subject to form electrical and mechanical stresses. Besides that, there are also contaminations caused by chemical interaction with windings and other solid insulations, catalysed by high operating temperature. Consequently, the original chemical properties of transformer oil changes gradually, cause it no longer function effectively after many years. Therefore, this oil should be tested periodically to ascertain its basic electrical properties, and make sure it is suitable for further use or necessary actions like filtration has to be done. The details of conducting these test is available in the standards issued by the IEC, ASTM, IS, BS. 1.2 Background Problem The dielectric strength of insulating oil is the oils ability to withstand electrical stress without failure. This test is done by applying a controlled ac voltage to two electrodes which are immersed in the insulating oil. The gap between two electrodes placed in a specified distance. The voltage recorded when the current arc across this gap is the dielectric strength breakdown strength of the insulating liquid. Contaminants such as water, carbon, sediment and conducting particles can reduce the dielectric strength of insulating oil. Clean dry oil has an inherently high dielectric strength but this does not indicates the absence of all contaminates, it may indicate that the amount of contaminants present between the electrodes is not large enough to affect the average breakdown voltage of the liquid. Power transformers are often operated under aged conditions. Thus the moisture content in oil increases, aging products become dissolved and particles are dispersed. Besides that, transformers are operated under novel environmental conditions, were low or high pressures exist. A safe service necessitates the thorough investigation of these influences. 1.3 Problem Statement Monitoring system of transformer oil existing is usually done in periodically. Duration of each use of transformer oil has been established within a time period for the replacement of the new transformer oil. So, the used transformer oil cannot be fully ensured in accordance with the standards set and this could cause a disruption in the operation of transformer. In addition, the monitoring system of transformer oil existing is expensive as well as the impact of waste oil is hazardous and cannot be disposed of. Thus, a permanent monitoring system of transformer oil with minimal costs should be established to ensure the transformer oil is always good quality to use. 1.4 Objectives The objectives of the project are important to ensure the research will fulfill the solution of the problem of the research. There are intentions conducting the research are shown below:- To study on the transformer oil and the maintenance procedures. To design a dielectric test device for transformer oil with using commercial off-the-shelf (COTS) equipment. 1.5 Scopes The scopes of the project are important to ensure every step is followed in completing the research. The scopes also could be important reference to gain related data or information of the research. Those are the scopes of the project:- To study on the quality of transformer oil. To study on the dielectric strength of transformer oil. To study the maintenance of oil immersed distribution transformer. Literature research about the monitoring of Dielectric Breakdown of transformer oil. To design a Dielectric Strength testing circuit. To analyze the result of Dielectric Strength testing. 1.6 Thesis Outline In preparing this project, the development of any information obtained should be gathered and described in each chapter are contained in the project report. Each chapter will discuss some important issues. Through this project, Chapter 1 as an introduction to the project discuss on overview of the project, background problem and problem statement. The objectives and scopes of the project were also discussed in this chapter. Then, Chapter 2 will explain in an inclusive literature review of transformers, transformer oil, the methods of monitoring and maintenance of transformer oil, equipments or tools required and software programming suitable for design the Dielectric Strength testing circuit. Next, Chapter 3 will describe the methodology used in preparing this project. This chapter is important to ensure that methods and tools used systematically and effectively. Chapter 4 will give an explanation and analysis of the circuit to be designed. This chapter also includes the methods and results of tests carried out by using the circuit designed. Problems occur in doing this project and steps to overcome the problems also discussed in this chapter. Finally, Chapter 5 which is the last chapter in this project as the conclusion of the project and some suggestions for further research on this project. CHAPTER 2 LITERATURE REVIEW 2.1 Introduction Transformer is one of the most useful appliances ever invented. Transformer can raise or lower the voltage or current in alternating current (AC) network, the circuit can be isolated from one another, and to increase or decrease the apparent value of a capacitor, inductor, or resistor. Furthermore, the transformer allows us to transmit electricity long distances and to circulate safely in factories and homes. (Electrical Machines, Drives, and Power Systems, 6th Edition). The cost of a transformer is high. The failure of one transformer resulted in a loss in terms of the price of one transformer or in terms of energy supply disruptions to consumers. Therefore, to monitor the transformer oil is one the right way and good for detecting the causes of damage to transformers. 2.2 Transformer Transformer is one of the most important electrical devices. Transformer is widely used in power systems and electronic devices. Transformer can also raise and lower voltage levels and the alternating current to suit application. Transformer can transfer power from one section to another on the same frequency but different voltage levels and currents. Transformer basically consists of two coils of a conductor which acts as an inductor electrically separate but magnetically attached. Transformer consists of two loops wrapped around the core base, core and coil which are a part of the transformer structures. Figure 2.1 shows the general structure of a transformer. When alternating current connected to the transformer primary windings, current will flow through the primary winding. Alternating current flows will create an alternating magnetic flux in the transformer core. The magnetic flux can flow to the secondary winding of the transformer through the transformer core. According to the Faraday law, the electromotive force or voltage is induced in the coil-winding transformer when the flux is changes in value. Because of the magnetic flux in the transformer core is an alternating flux whose value is constantly changing over time, the electromotive force or voltage is always induced in the coil-winding transformer. Electromotive force in the primary winding is known as the self-induced electromotive force is due to the flux generated by the coil itself. While the electromotive force induced in the secondary winding is known as mutual induction electromotive force due to the induced electromotive force is caused by magnetic flux generated from the primary winding. In an ideal transformer, the induced voltage in the secondary winding (Vs) is comparable to the primary voltage (Vp), and is given by the ratio of the number of turns in the secondary (Ns) to the number of turns in the primary (Np) as follows: VsVp= NsNp (2.1) By the selection of the ratio of turns, a transformer thus allows an AC voltage to be stepped up by making Ns greater than Np, or stepped down by making Ns less than Np. There are many types of transformer are designed to meet the specific industrial applications. These include autotransformer, control, current, distribution, general-purpose, instrument, isolation, potential (voltage), power, step-up, and step-down. To avoid rapid damage of the insulating materials inside a transformer, sufficient cooling of the windings and the core must be provided. Indoor transformers below 200 kVA can be directly cooled by the natural flow of the surrounding air. The metallic housing is equipped with ventilating louvres so that the convection currents that can flow over the windings and around the core. Large transformers can be constructed in the same way, but the forced circulation of fresh air must be provided. Such as a dry-type transformers are used inside the building, away from the hostile atmosphere. Distribution transformers below 200 kVA are usually immersed in mineral oil and sealed in a steel tank. Oil carries the heat away to the tank, which it is lost by radiation and convection to the outside air. Insulating oil is much better than air, consequently, it is often used in high voltage transformers. As the power rating increased, external radiators are added to increase cooling surface of the tank contains oil. Oil circulates around the transformer windings and moving through the radiator, where heat released into the surrounding air. For still higher levels, cooling fans blow air over the radiators. For transformers in the megawatt range, cooling can be effected by the oil-water heat exchanger. Hot oil drawn from the transformer tank is pumped into the heat exchanger where it flowing through the pipes that are in contact with cold water. Such as heat exchanger are very effective, but also very expensive, because water itself must continuously cool and recirculated. Some large transformers are designed to have multiple ratings, depending on the cooling method used. Thus, the transformer may have triple ratings depending on whether it is cooled by: the natural circulation of air (AO) for 18000 kVA, or forced-air cooling with fans (FA) for 24000 kVA, or the forced circulation of oil accompanied by forced-air cooling (FOA) for 32000 kVA. These elaborate cooling systems are nevertheless economical because they enable a much greater output from the transformer of a given size and weight. The type of transformer cooling is designated by the following symbols: AA dry-type, self-cooled AFA dry-type, forced-air cooled OA oil-immersed, self-cooled OA/FA oil-immersed, self-cooled/forced-air cooled AO/FA/FOA oil-immersed, self-cooled/forced-air cooled/forced-air, forced-oil cooled The temperature rise by the resistance of oil-immersed transformers is either 55C or 65C. The temperature must be kept low to preserve the oil quality. By contrast, the temperature rise of dry-type transformer may be as high as 180C, depending on the type of insulation used. 2.3 Transformer Oil Transformer oil or insulating oil is usually a highly refined mineral oil that is stable at high temperatures and has excellent electrical insulating properties. It is used in oil-filled transformers. Transformer oil is like the blood in the body of transformer. It must be periodically tested to monitor condition of the transformer. Transformer oil serves three basic functions which are to insulate, to cool and maintain the transformer functions at all times. To keep these functions the industry has agreed on certain standards. The two leading transformer oil specifications in the world are IEC 60296 and ASTM D 3487. In these standards there are many specific requirement and limits based on physical and chemical properties. Many of these properties and their limitations derived from the chemistry of refined mineral oils in combination with application specific requirements of electrical insulation. In an age when alternative to mineral oil being developed, it is important both to know what is desirable and what is likely to achieved in technical terms. Whereas some brands of transformer oil could only meet the specifications, the others excel. In the end, transformer oil consumers should decide which properties are most important to their intended use. Technical specifications also have an impact on issues such as asset management, maintenance planning and investment budget. To help make decisions in these areas it is helpful to have a basic understanding of the science underlying specifications and limitations. In Malaysia, mostly used transformer oil is mineral crude oils (uninhibited mineral oils) which contains Paraffic, Naphteric or mixed. It is supplied by Hyrax Oil Sdn. Bhd. 2.3.1 Transformer Oil Properties The main function of transformer oil is insulating and cooling of the transformer. Thus, it should have the following properties: High dielectric strength and good dielectric properties resulting in minimum power loss. Low viscosity improves cooling. Freedom from inorganic acids, alkali, and corrosive sulphur. Resistant to emulsification. Rapid settling of arc products. Low pour point. High flash point resulting in low evaporation losses due to high thermal stability. High resistivity gives better insulation values between windings. Excellent interfacial tension for quick water separation. Proven resistance to electrical stresses. High electrical strength. Remarkably low sludge and acidity formation in both ageing and oxidation tests gives longer life to oil and equipment during storage and service. 2.3.2 Theory of Transformer Oil Parameters a) Water Content The standard for measuring water content in oil is IEC 60814. (Marcel Dekker, 1990). The important function in transformer oil is to provide electrical insulation. When oil has higher moisture content, it can reduce the insulating properties of the oil, which can cause dielectric breakdown. This is the particular importance with fluctuating temperatures because, transformer will cools down if any dissolved water will become free and this oil become poor insulating power and fluid degradation. (Azliza binti Mohd Jelan,2009). b) Breakdown Voltage Dielectric strength is one of the important characteristic in insulation field. Breakdown voltage of the insulating material is the maximum electric field strength that it can be withstand intrinsically without breaking down and without failure of its insulating properties, dielectric strength also means that a certain configuration and electrode dielectric material that produces minimal damage to the electric field. (Rohaina bt Jaafar, 2003). Breakdown strength in liquid according to various factors influenced in the experiment which is electrode material and surface state, geometry electrode, the presence of chemical pollutants, the presence of physical pollutants, oil molecular structure, temperature and pressure. There also various factors in the theory of voltage breakdown which is like electronic theory, suspended particle theory, cavitations theory and bubble theory were postulated. (Olive Oil from the Tree to the Table). Dielectric strength also depends on the time and method of tension, purity materials, the type of tension as well as experimental and environmental parameters, until set of dielectric strength unique to the specific material is difficult, a range of values can be found and used for application purposes. (Noraniza binti Toriman, 2003). 2.3.3 Types of Transformer Oil a) Mineral Transformer Oil (Mineral Based Oil) A mineral oil is a liquid by product of the petroleum refineries to produce gasoline and other petroleum based products from crude oil. A mineral oil in this sense is transparent and colourless oil composed mainly of alkenes and cyclic paraffin, related to. Mineral oil is a substance of relatively low value, and it is produced in very large amounts. Mineral oil is available in light and heavy grades, and can often be found in drug stores. There are three basic classes of refined mineral oils: Paraffinic oils, based on n-alkenes. Naphthenic oils, based on cycloalkanes. Aromatic oils, based on aromatic hydrocarbons. Table 2.1 Properties of Mineral Transformer Oil (https://www.substech.com) Property Value in metric unit Value in US unit Density at 60F (15.6C) 0.880 *10 kg/m 54.9 lb/ft Kinematic viscosity at 68F (20C) 22 cSt 22 cSt Kinematic viscosity at 212F (100C) 2.6 cSt 2.6 cSt Fire point 170 C 338 F Pour Point -50 C -58 F Flash point 160 C 320 F Auto ignition point 280 C 536 F Specific heat capacity 1860 J/(kg*K) 0.444 BTU/(lb*F) Thermal conductivity at 20C (68F) 0.126 W/(m*K) 0.875 BTU*in/(hr*ft*F) Thermal expansion at 20C (68F) 7.5*10-4 C 4.2*10-4 in/(in* F) Breakdown strength min.70 kV min.70 kV Dielectric dissipation factor at 90C (194F) max.0.002 max.0.002 Permittivity at 20C (68F) 2.2 2.2 b) Silicon Transformer Oil (Polydimethylsiloxane based fluid) Polydimethylsiloxane (PDMS) belongs to a group of polymeric organosilicon compounds that is often referred to as silicones. PDMS is the most widely used silicon-based organic polymer, and is known for its unusual rheological properties. PDMS is optically clear, and, in general, is considered to be inert, non-toxic and non-flammable. It is called dimethicone and is one of several types of silicone oil (polymerized siloxane). Its applications range from contact lenses and medical devices to elastomers; it is present, also, in shampoos, caulking, lubricating oils, and heat-resistant tiles. Table 2.2 Properties of Silicon Transformer Oil (https://www.substech.com) Property Value in metric unit Value in US unit Density at 60F (15.6C) 0.960 *10 kg/m 59.9 lb/ft Kinematic viscosity at 68F (20C) 55 cSt 55 cSt Kinematic viscosity at 212F (100C) 15 cSt 15 cSt Fire point min.350 C min.662 F Pour Point max.-50 C max.-58 F Flash point min.300 C min.572 F Auto ignition point 435 C 815 F Specific heat capacity 1510 J/(kg*K) 0.360 BTU/(lb*F) Thermal conductivity at 20C (68F) 0.15 W/(m*K) 1.019 BTU*in/(hr*ft*F) Thermal expansion at 20C (68F) 10.4*10-4 C 5.8*10-4 in/(in* F) Breakdown strength 50 kV 50 kV Dielectric dissipation factor at 90C (194F) max.0.001 max.0.001 Permittivity at 20C (68F) 2.7 2.7 c) Synthetic Transformer Oil (Organic Esters Based Fluid) Synthetic oil is a lubricant consisting of chemical compounds which are synthesized using chemically modified petroleum components rather than whole crude oil. Synthetic oil is used as a substitute for lubricant refined from petroleum when operating in extremes of temperature, because it generally provides superior mechanical and chemical properties than those found in traditional mineral oils. Table 2.3 Properties of Synthetic Transformer Oil (https://www.substech.com) Property Value in metric unit Value in US unit Density at 60F (15.6C) 0.970 *10 kg/m 60.6 lb/ft Kinematic viscosity at 68F (20C) 70 cSt 70 cSt Kinematic viscosity at 212F (100C) 5.3 cSt 5.3 cSt Fire point 322 C 612 F Pour Point -60 C -76 F Flash point 275 C 527 F Autoignition point 438 C 820 F Specific heat capacity 1880 J/(kg*K) 0.448 BTU/(lb*F) Thermal conductivity at 20C (68F) 0.144 W/(m*K) 0.98 BTU*in/(hr*ft*F) Thermal expansion at 20C (68F) 7.5*10-4 C 4.2*10-4 in/(in* F) Breakdown strength min.75 kV min.75 kV Dielectric dissipation factor at 90C (194F) max.0.006 max.0.006 Permitivity at 20C (68F) 3.2 3.2 2.3.4 Transformer Oil Testing Regular sampling and testing of insulation oil taken from the transformer is a valuable technique in the preventative maintenance program. The transformer can be used longer if a proactive approach undertaken based on the transformer oils condition. Hence, transformer oil must be periodically tested to ensure its basic electrical properties. These tests can be divided into: a) Liquid Power Factor The IEC standard method for this test is IEC 247. This involves measuring the power loss through a thin film of liquid test. Water, contamination, and the decay products of oil oxidation tend to increase the power factor of oil. (A Guide to Transformer Oil Analysis, by I.A.R. GRAY) b) Dielectric Breakdown Strength The dielectric breakdown voltage is a measure of the ability of the oil to withstand electric stress. Dry and clean oil showed the inherent high breakdown voltage. Free water and solid particles, especially the latter in combination with high levels of dissolved water, tend to migrate to areas of high electric stress and dramatically reduce the breakdown voltage. The measurement of breakdown voltage, therefore, serves primarily to indicate the presence of contaminants such as water or conducting particles. A low breakdown voltage can be indicating that one or more of these are present. However, a high breakdown voltage does not necessarily indicate the absence of all contaminants. This test was conducted in accordance with IEC 156. (A Guide to Transformer Oil Analysis, by I.A.R. GRAY) c) Moisture The purpose of dielectric tests are conducted is to ensure the monitoring moisture can be done directly. IEC 733 is a well established and can measure the moisture down to the low part of the million levels. While the acceptable values have been set by the voltage class for moisture, these are somewhat misleading. A truer picture of moisture in the transformer must be taken into account so that percentage saturation of the oil by moisture and percentage moisture by dry weight of the solid insulation can be calculated. (A Guide to Transformer Oil Analysis, by I.A.R. GRAY) d) Neutralization Number (Acidity) This value, measured by IEC standard method IEC 1125A reported as mg KOH / g sample, reports the relative amount of oil oxidation products, especially acids, alcohol and soap. As oil continues to oxidize, the acid increased gradually, generally over the years. Running the acid number regularly provides guidance as to how far oxidation of the oil has proceeded. The acceptable limit by the test is usually used as general guidelines to determine when the oil should be replaced or reclaimed. (A Guide to Transformer Oil Analysis, by I.A.R. GRAY) e) Interfacial Tension The test methods for interfacial tension (IFT), IEC 6295, measuring the strength in mN/m from the interface that will form between service aged oil and distilled water. Because the decay products of oil oxidation are oil and water soluble, their presence would tend to weaken the interface and reduce the interfacial tension value. (A Guide to Transformer Oil Analysis, by I.A.R. GRAY) f) Colour/Visual Field inspection of liquid insulation (IEC 296) includes examination for the presence of cloudy or sediment and the general appearance as well as a colour inspection. As oil ages, it will be darken gradually. Very dark oil or oil that changes drastically over a short period of time may indicate a problem. Any cloudiness or sediment indicates the presence of free water or particles that may be harmful to continued the equipment operation. Taken alone, without considering the past history or other test parameters, the colour is not very important to diagnose transformer problems. If the oil has an acrid or unusual odor, consideration should be given to carrying out further tests. (A Guide To Transformer Oil Analysis, by I.A.R. GRAY) g) Sludge/Sediment The IEC 296 test distinguishes between the sediment and sludge. Sediment is an insoluble substance present in the oil. Sediment may consist of insoluble oxidation or degradation products of solid or liquid materials, solid products such as carbon or metallic oxide and fibres or other foreign matter. Sludge is polymerized oxidation products of solid and liquid insulating material. Sludge is soluble in oil up to a certain limit. At sludge levels above this, the sludge comes out of the solution contributing an additional component to the sediment. The presence of sludge and sediment can change the electrical properties of the oil and prevent the exchange of heat, so encouraging damage to the insulating material. (A Guide to Transformer Oil Analysis, by I.A.R. GRAY) h) Inhibitor Content Inhibited oil deteriorates more slowly than uninhibited oil so long as active oxidation inhibitor is present. However, after the oxidation inhibitor is consumed, the oil can be oxidized at a higher level. Determination of oxidation inhibitor remaining in the in-service transformer oil is based on IEC 666. (A Guide to Transformer Oil Analysis, by I.A.R. GRAY) i) Dissolved Gas Analysis The purpose and functions of the DGA is to provide an indication as to whether there may be an active or incipient transformer fault affecting the operation and continued health of the equipment. DGA is used to detect and measure nine of dissolved gases which are Hydrogen, Oxygen, Nitrogen, Methane, Carbon Monoxide, Carbon Dioxide, Ethan, Ethylene, and Acetylene. (A Guide To Transformer Oil Analysis, by I.A.R. GRAY) j) Dissolved Metals Analysis Analysis of dissolved metals can be used in further identifying the location of transformer faults discovered by dissolved gas analysis. For example, the dissolved metal analysis indicating the presences of conductor metals may indicate a fault is occurring in the winding or at a connection while the presence of iron indicates involvement of the core steel. (A Guide To Transformer Oil Analysis, by I.A.R. GRAY) k) Furanic Compounds When paper breaks down, the cellulose chains are broken and glucose molecules (which serve as the building blocks of the cellulose) are chemically changed. Each of the glucose monomer molecules that are removed from the polymer chain becomes one of a series of related compounds called furans or furanic compounds. Because these furanic compounds are partially soluble in oil, they are present in both the oil and the paper. Measuring the concentration of the oil can tell us a little more about the paper. The standard method typically tests for five compounds that are normally only present in the oil as a result of the paper breaking down. (A Guide To Transformer Oil Analysis, by I.A.R. GRAY) 2.3.4Instrument / Device for Transformer Oil Testing a) Oil Test Set (Megger OTS 60 PB) The OTS 60PB is a 0 60 kV, battery powered portable dielectric strength oil test set. Its size and weight make it suitable for on-site assessment of insulating oil quality. The dielectric strength test it performs is an important deciding factor in knowing whether to retain or replace the oil. Breakdown voltage is measured, averaged and displayed under the control of built-in programmed sequences. Go/no-go testing is available. OTS 60PB follows the oil testing sequences described in many national and other specifications among which are: British BS 148, BS 5730a (automatic proof testing), BS 5874; International IEC 156, American ASTM D877 ASTM D1816, German VDE 0370, French NFC 27, Spanish UNE 21, Italian CEI 10-1, Russian GOCT 6581, South African SABS 555, Australian AS 1767 and Institute of Petroleum IP 295. Two types of withstand (proof) testing of an oil sample are available. The principle with these tests is to subject the oil sample to a specified voltage for a defined length of time (1 minute) to see if it will withstand that voltage. In one of the tests the voltage is removed after a minute, in the other test, the voltage continues to rise after the minute until breakdown or the maximum value is reached. Withstand (proof) tests can be set up to the users own requirements, and then repeatedly called up to quickly test oil under known fixed conditions. The OTS 60PB is used for determining the dielectric strength of liquid insulants such as insulating oils used in transformers, switchgear, cables and other electrical apparatus. It is portable and suitable for testing on site as well as in the laboratory. The test set is fully automatic. The operator has only to prepare the test vessel, load it with sample oil, place it in the test chamber, select the appropriate specification for the tests and then start the test sequence. The test set carries out automatically (and if necessary unattended) the sequence of tests as defined by the pre-selected national specification. Oil testing specifications, for which the set is pre-programmed, are as follows:- A 5 minute test sequence is also provided so that the operator may quickly obtain an idea of the breakdown value of an oil sample. Two types of semi automatic withstand (proof) testing of an oil sample are available. The principle with these tests is to subject the oil sample to a specified voltage for a defined length of time (1 minute) to see if it will withstand that voltage. In one of the tests the voltage is removed after a minute, in the other test the voltage continues to rise after passing for one minute until breakdown or the maximum value is reached. Withstand (proof) tests can be set up to the users own requirements, and then repeatedly called up to quickly test oil under known fixed conditions. The test results can be reviewed on the LCD or printed via the RS232 interface. An optional, battery operated printer is available to obtain a hard copy of the results. The safety features incorporated in the test sets design include two forced break switches used as described in B S 5304. These are interlocked with the oil vessel loading door. b) Volumetric titration system Metrohm Titrino SM 702 An automatic potentiometric titration system Titrino SM 702 with Exchange Unit 806 made by Metrohm measured the acidity of the oils. Here the Total Acid Number (TAN) was determined by a volumetric titration with potash to neutralize the carboxylic acids. The titration took place as follows: At first 10 g of the oil were dissolved in 40 ml of solvent toluene / ethanol in a ratio of 5 to 4. Potash (KOH, 0.1 mol/l) was added as titre with volume increments of 0.001 ml or 0.005 ml depending on the expected acidity. The system detects, when the acid-base-equivalence-point EP is reached by a voltage measurement in the solution. From the volume of potash at the EP equation below calculates the acidity as TAN: TAN= EP1-C31.C01.CO2.CO3CO0 (2.2) TAN total acid number EP1 equivalent point C31 blind value of the solvent toluene/ethanol CO1 0.1 mol/L, concentration of titre CO2 1 CO3 56106 g/mol, molar mass of titre CO0 weight of the oil sample c) Kelman TRANSPORT X Portable DGA Unit And Moisture In Oil Dissolved Gas Analysis (DGA) is recognised as the most important test in monitoring power transformers. It is now being successfully extended to other oil filled equipment such as tap changers and circuit breakers. The TRANSPORT X unit has been designed to be very rugged and user friendly with an emphasis placed on field operation. The unit is used by over 200 companies and utilities and has sold in excess of 600 units worldwide. The TRANSPORT X test uses state of the art infrared measurement technology to give accurate, reliable results in a matter of minutes. The TRANSPORT X product represents an invaluable tool for Asset Management and will increase the power of any DGA program. Extensive field and laboratory use worldwide has proven that the TRANSPORT X test gives highly reliable results and that it is genuinely suitable for field conditions. The TRANSPORT X equipment minimizes the risk of carryover between tests. With the ability to go from high gassed samples (such as tap changers) to subsequent low gassed samples (such as main tanks) with no contamination of results the user can confidently test all types of oil filled equipment. Internal diagnostic software helps to translate ppm data into valuable information by employing standard DGA interpretation rules e.g. Duvals triangle, key gas analysis etc. These established algorithms assist the user to analyse the condition of the transformer. The accompanying TransportPro PC software allows the user to download records to a PC database for export to Kelman PERCEPTION software or Excel. 2.4 Monitoring Method Basically, there are two method of monitoring transformer oil which is on-line monitoring and off-line monitoring. 2.4.1 On-Line Monitoring On-line monitoring and predictive technologies that have been used can reduce the inherent deficiencies in many current maintenance practices. Many of these technologies have become more intelligent so that it requires less expertise in interpreting the results. It is not always valid, and difficult for companies to hire enough qualified workers in each location to understand the various kinds of data from any types of equipment. More information provided by many monitors than the normal end user can understand, but is available to members for additional diagnostics and prognostics. A new acronym has emerged to Intelligent Electronic Devices (IED). Unfortunately there is no technology that is the Holy Grail for the assessment of electrical equipment. In many cases, several technologies must be used to perform a complete diagnosis. Most of the monitoring system designed to warn the user or unusual problems and provide more diagnostic data. Most of these technologies have been built in communications capability that allows you to forecast long-distance monitoring through Ethernet, serial communications such as Modbus, DNP 3.0 or customized data streams and wireless modems, and analog. Remote monitoring allows companies to streamline forecasting expertise in centralized locations or outsourcing to the right experts. This can be done continuously or periodically or event driven. Event driven systems send out reminders via, pager, phone, e-mail or fax to the right person, and then communicate back to the monitor for further analysis and recommendations. Most industrial facilities do little monitoring of their Power Transformers. Nowadays systems can control and monitor all aspects of a transformer including temperatures, loads, cooling systems, pressures, bushings and windings. Four great examples include: The monitoring of the loads on the cooling fans and pump circuits to indicate abnormal conditions such as locked rotor or loss of cooling capacity. Monitoring the temperature differential across the connection board between the main tank and the load tap changer compartment Continuous monitoring of the power factor and capacitance of High Voltage Bushing Central data concentrator and communication RTU for all third parties monitors such as Partial Discharge (PD) and DGA. 2.4.2 Off-Line Monitoring Off-line tests are go/no go tests. Most of the techniques whether electrical or chemical methods, and destructive or non-destructive methods, only provide partial information about the state of the insulation condition of power transformers. More advanced condition monitoring or condition assessment techniques have been developed and are now starting to come into more general use. They have been developed in response to the need for new materials assessment methods. However, in some advanced diagnostics tools are still in the developmental stage, either in the technical development or, more likely, in the methods of analysis and interpretation of the test data. Examples of Off-Line Monitoring: Recovery Voltage Measurement (RVM) Polarization and Depolarization Current Measurement (PDC) Frequency Domain Dielectric Spectroscopy (FDS) Frequency Response Analysis (FRA) PD Measurement RVM, PDC FDS are based on the use of the dielectric response of insulating materials to the application of electric fields Conductivity, Polarization Dielectric Response. 2.4.3Monitoring Method of Dielectric Breakdown There are several existing methods for measuring the dielectric strength of such interference, ASTM D877 ASTM D1816 and IEC 60156 method. . While these methods can often be performed on-site with portable equipment and are valuable laboratory tests, they suffer from poor repeatability, and due to their destructive nature, cannot be used on-line. Progress has been made in controlling the destructive energy released by the test device (American Society for Testing and Materials (ASTM), West Conshohocken, PA, 1999), but not to the level or the payment to be suitable for use on-line. Like the arcs produced in contacting equipment, the arcs produced in the test instruments degrade the breakdown strength of the oil. Since the dielectric breakdown strength is the quantity under measurement, this limits the number of successive tests that can be run on a given sample. In the ASTM method, five-shot test performed on the samples provided before should be discarded. With only five samples, it may be difficult to obtain statistically valid representation of oil and, in fact, the ASTM standard allows the range of 92% of means a five-shot test will be valid. (ASTM International, West Conshohocken, PA, 2005) With some kind of chemistry and physical particulate contaminants are generally present, the oil can be a homogeneous media. Temperature variations can locally influence the relative saturation of moisture; turbulence of flow and proximity to sources of pollution can influence the type and concentration of particulate contaminants. So, it may be difficult to obtain a representative sample of the actual state of the oil with a small sample size used in the existing instruments and the limited number of test specimens to be drawn from the size of the oil compartment. The inhomogeneity of oil, combine with the fact that the number of test shots that can be restricted more to reduce the ability of existing test methods. It is not surprising that while the dielectric breakdown strength are important, lack of faith is placed on the ability of standard test methods to measure accurately. The key to both improving the accuracy of laboratory test methods and enabling on-line testing is the reduction of energy dissipated during the breakdown of the oil. If the shot did not damage the oil test, more test sample shots can be done and more accurate statistics can be developed. Traditionally, the test method is to use a big scheme, but simply to generate the high voltage necessary to break down the oil. This device comprises essentially a variable autotransformer which is used to increase tension in the cell test until damage occurs, at which point the relay to close off the current transformers. With all the energy stored in magnetic and capacitance of the transformer, the energy released into the cell into the test after the relay shut off (assuming that the relay works in real time) to several tens of joules. Many cheaper dielectric breakdown test set available today is still depending on the approach of the variable autotransformer. Recently, efforts have been made to reduce the energy lost during the damage even by using a resonant test set. These test sets limit the stored energy available during a breakdown event and can very quickly detect a breakdown and de-energize the test set. Such sets are capable of limiting the energy dissipated during a breakdown to a mere 20 mJ (American Society for Testing and Materials, West Conshohocken, PA, 1999). Unfortunately, this advanced capability comes at a price of complexity and cost, making this device a laboratory test device which is very good, but not suitable for use on-line. 2.5 National Instrument Company and Products National Instruments, NI is an American company with approximately 5,000 employees and does direct operations in 41 countries all over the world. The companys headquarter is in Austin, Texas and it is a producer of virtual instrumentation software and automated test equipment. The software products include LabVIEW, a graphical development environment, LabWindows/CVI, which provides VI, tools for C, TestStand, a test sequencing and management environment, and Multisim, which is formerly Electronics Workbench is an electrical circuit analysis program. Hardware products is including the VXI, VMEbus, and PXI frames and modules, as well as interfaces for GPIB, IC, and other industrial automation standards. The company also sell real-time embedded controllers, including CompactRIO and Compact FieldPoint. Applications which commonly used are data acquisition, instrument control and machine vision. National Instrument also is in the list of 100 best companies in the world (National Instrumen ts, 2009). 2.5.1 NI USB TC01 Thermocouple Measurement Device The NI USB-TC01 thermocouple measurement device with NI InstantDAQ technology features so that can directly take temperature measurements with the personnel computer (PC). Just plug in the device and it automatically loads the built-in software for viewing and logging data. No driver installation required. Connect to any USB port to use the PC as a display and monitor data in real time. The device is compatible with J, K, R, S, T, N, and B thermocouples, uses a standard miniplug so it easy to connect the device with the thermocouple. More applications for alarming, triggering, and scheduled data logging are available as free downloads. It also can build the applications with NI LabVIEW graphical programming and NI-DAQmx driver software for the further customization. (https://sine.ni.com/ds/app/doc/p/id/ds-215/lang/en). 2.5.1.1 NI InstantDAQ Technology The USB-TC01 with NIInstantDAQ technology features is automatically loads software for viewing and logging data after connecting the device to the computer. There is no previous driver installation required. The device simply plugs into the USB port, and loaded the USB-TC01 launch screen from built-in memory on the device. The current thermocouple reading will display at the launch screen so that the thermocouple type and temperature units can be configured. It can log data with the temperature logger application, open and customize the temperature logger source code inLabVIEW. (https://sine.ni.com/ds/app/doc/p/id/ds-215/lang/en). 2.5.1.2 Built-In Temperature Logger The USB-TC01 temperature logger can load directly from the USB-TC01 launch screen. It can graph live measurements with the temperature logger and log data with timestamps to a text file. (https://sine.ni.com/ds/app/doc/p/id/ds-215/lang/en). 2.5.1.3 Taking Measurements with Software a) Logging Temperature From the NI USB-TC01 Launch Screen, click Temperature Logger.In the NI USB-TC01 Temperature Logger window that opens, select the Thermocouple Typeand Temperature Units. If want to capture, or log, the temperature readings, select Log Data. Click Start to acquire NI USB-TC01 and graphs the temperature until click Stop. Click View Logto open the log file. (USER GUIDE AND SPECIFICATIONS; NI USB-TC01 Single Channel Thermocouple Input Module). b) Downloading Additional Application Additional ready-to-run applications that provide added functionality for the NI USB-TC01 is available as free download. It can access these applications by selecting Do More with your NI USB-TC01from the NI USB-TC01 Launch Screen. (USER GUIDE AND SPECIFICATIONS; NI USB-TC01 Single Channel Thermocouple Input Module). c) Creating Custom Software In addition to taking measurements with the NI USB-TC01 Launch Screen, it can also build with LabVIEW and NI-DAQmx driver software for the NI USB-TC01. Graphical icons and wires that resemble a flowchart in LabVIEW can graphically wire together function blocks to create own applications for logging data, alarming, triggering, reporting, and performing real-time data analysis. (USER GUIDE AND SPECIFICATIONS; NI USB-TC01 Single Channel Thermocouple Input Module). 2.5.1.4 Connecting Input The NI USB-TC01 provides connections for one thermocouple. Thermocouple types J, K, R, S, T, N, E, and B are supported. The NI USB-TC01 has a two-prong uncompensated thermocouple input that accepts a standard two-prong male mini thermocouple connector. Connect the positive lead of the thermocouple connector to the TC+ terminal, and the negative lead of the thermocouple connector to the TC- terminal. Figure 2.13 shows the NI USB-TC01 terminal assignments. If it is unsure which of the thermocouple leads is positive and which is negative, check the thermocouple documentation or the thermocouple wire spool. For best results, NI recommends the use of insulated or ungrounded thermocouples when possible. If need to increase the length of the thermocouple, use the same type of thermocouple wires to minimize the error introduced by thermal EMFs. Temperature measurement errors depend in part on the thermocouple type, the temperature being measured, the accuracy of the thermocouple, and the cold-junction temperature. Error graphs for each thermocouple type connected to the NI USB-TC01 are shown in the specificationssection. (USER GUIDE AND SPECIFICATIONS; NI USB-TC01 Single Channel Thermocouple Input Module). 2.5.1.5NI USB-TC01 Circuitry The NI USB-TC01 devices thermocouple channel passes through a differential filter and is sampled by a 20-bit analog-to-digital converter (ADC), as shown in Figure 2.13. (USER GUIDE AND SPECIFICATIONS; NI USB-TC01 Single Channel Thermocouple Input Module). 2.6 Discharge Circuit 2.6.1 High Voltage Zappers A high voltage can be generated using circuit shown in figure 2.14 by discharging the energy stored in a large-value capacitor through the primary winding of a high-turns-ratio step-up transformer. This is known a Capacitor-Discharge (CD) system. It is the same concept used by many of the high-performance auto-ignition systems to produce a super-hot spark and used by some of the top of the line electric fence chargers. CD ignition coil should be selected and use a 440uF, 75-100V DC electrolytic capacitor for C1 used to achieve a maximum spark. The voltage across C1 monitored using a DC voltmeter. R4 is adjusted so that the Q3 fires when the charging voltage across C1 reaches between 50-55 volts. It should produce a spark 1.25 to 1.5 inches long every second or so with that setting. C1 changed to a 10uF, 220VAC motor capacitor to obtain a faster pulse rate, with some reduction in the output. Experiment repeat with different component values to obtain the desired results. 2.6.2Vacuum Discharge Driven by a Magnetic Pulse Compression Circuit Low pressure discharges in a compact coaxial geometry were produced by applying either positive or negative high voltage pulses delivered by a three-stage magnetic pulse compression circuit. The driver provided repetitive pulses of up to 15 kV and 20 J maximum transferred energy per pulse. The inner electrode was a rod having either a pointed or flat end with sharp edges. When using the negative flat-end electrode, the breakdown occurred down to lower pressures (about 2.5mPa).The discharge was continued inside the inter electrode gap, and the discharge current had higher values (around 4 kA), the discharge characteristics being very reproducible. The measurements suggested that the field effect was responsible for the discharge onset in this configuration. On the other hand, low pressure discharges are interesting from the point of view of plasma radiation sources (e.g. lasers, electron sources, flash X-ray sources). For such radiation sources, it is important to have very reproducible breakdown, plasma development and emission parameters. Ahigh-power low-pressure discharge can be also used as fast switch or astriggering means for more powerful discharge configurations. This circuit concern on the breakdown and discharge characteristics for a large range of working power. 2.6.4Charge/Discharge Equalization Management Circuit Figure 2.18 shows a circuit is composed by one switch pipe Q, one diode D and one inductance L. The connection mode is that after Q and D is parallel connected, they are connected with L in series, and then respectively connected with the anode and the cathode of the battery, where, the cathode of D connects the anode of the battery and L connects the cathode of the battery. In the automatic equalization equipment of series-wound storage battery pile, various equalization circuits are series-wound. `This circuit can be used with charge management and discharge management at the same time, and they are independent each other, and the equalization manager can be started in any stage of charge/discharge. The equalization voltage management of charge/discharge enhances the coherence of the single battery, reduces the accumulated influences of disequilibrium factors, and better solves the problem of a great lot of battery discarding induced by hybrid series-wound batteries with differences in the electrical cars. CHAPTER 3 METHODOLOGY 3.1 Introduction This project is a software and hardware development which is applied as testing equipment in monitoring transformer oil. To build this test circuit, some research must be done and planning should be made. These studies must be done in stages to facilitate the implementation of project work undertaken. In addition, the design and use of proper methods also need to ensure that the project is successfully implemented. 3.2 Project Activity In order to completing this project, every step taken must be organized and structured. This is to ensure that projects run according to proper procedure and follow the schedule before the deadline. This would avoid the duplication of the work when problems occur. Thus, a flow chart of the project should be created to help develop the work in order to complete this project. The first step to be taken is to obtain and review the information and data related to this project. Next is to identify tools and equipment needed to design a dielectric breakdown test circuit. The most important step in doing this project is to design a dielectric breakdown test circuit and doing the actual testing using the circuit which has designed to prove it can be used as a one of testing device for transformer oil. 3.3 Design the Dielectric Strength Test Circuit The circuit designed will be run automatically using Temperature Logger NI USB-TC01. Temperature Logger NI USB-TC01 is a software programme that contains data of temperature reading and can shows in form of a graph. This project begins from a small circuit that will flows the electricity and inject the voltage at the same time in the pure transformer oil. Then, the temperature of the oil will be taken using the thermocouple and NI USB-TC01. The temperature that has been measured will compare to the dielectric breakdown of transformer oil as in a theory. This procedure repeated for the mixture of pure oil and water. 3.4 Discharge Circuit Chosen After doing some research, the circuit as in Figure 3.3 has been chosen as most suitable circuit for this project. This circuit is cheap and efficient for 8-20 kHz flyback driver. The components needed to design this circuit are also easily obtained. This circuit use 12V DC voltage as the input and the flyback transformer (with ratio 1:100) which is connected to the circuit will step up the voltage so that the spark can be generated. The output voltage is about 1200V according to the ratio of the flyback transformer. 3.5 Monitoring Method In this project, a dielectric strength test done by using off-line monitoring. This test is conduct to determine the resistance of the insulation oil high-voltage AC flow (inject) before it was broken-dam (breakdown). This test can determine the moisture content, dust or other foreign objects such as objects fibrous. This test can be performed by taking samples of oil the former consisting of two probes. High voltage passes from the circuit built to the two probes and adjusted so that the two probes generate spark. Then, temperature reading of the transformer oil which is increase by time measured. 3.6 Testing Measures The test measures to be taken can be divided into two stages as follows: a) Testing function of the circuit Components are arranged as in the circuit diagram and soldered. Circuit is connected to a 12V power supply and switched on. Output voltage reading of the circuit is measured using a voltmeter. The circuit is turned off and then the flyback transformer is connected to the output point of the circuit. Two wires connected to the output point of the flyback transformer to be used as a substitute for probes. Then the distance between the two ends of the wire is adjusted to produce a spark. This step is repeated until the spark that gets clearer. b) Testing dielectric strength of transformer oil The testing container must be clean by two or three times with the oil to be tested. The oil samples filling up to the level indicated at the testing container and set up for testing. The test equipment set up as in Figure 3.7. The circuit switched on, the probes immersed in the oil and adjusted until it generate spark. The thermocouple also immersed in the oil to take the temperature readings. Then, the temperature of the transformer oil measure and the readings recorded. The results obtained compare to the standard data. CHAPTER 4 RESULTS AND DISCUSSIONS 4.1 Introduction This chapter will discuss all the results and findings that were obtained after several tests done. Then, the results compared to the relevant theory. All the problems and difficulties encountered during testing done were also discussed in this chapter. 4.2 Testing Function of the Circuit Prior to testing transformer oil, the circuit was built to be tested firstly to determine whether it can function properly or not. Initially, the circuit tested without a flyback transformer. The output voltage of the circuit was measured and it shows that the output voltage of the circuit is equal to the input voltage. This means that the components in the circuit to function properly. Later, the flyback transformer is connected to the circuit. Purpose of using the flyback transformer is to increase the input voltage with a high ratio that spark can be generated. In this case, the output voltage cannot be measured by common voltmeter because theoretically the output voltage produced by the flyback transformer is large and exceeds the limit that can be used by ordinary voltmeter. It only can measure the voltage output from the flyback transformer by using a special voltage meters and high voltage probes. However, as in theory it would be spark only happens when high voltage is passe d through the two sources are brought closer. This can be proven when the two ends of the wire that serves as a replacement to the probes are placed within a certain distance, the spark can be generated. 4.3 Testing Transformer Oil Usually, transformer oil dielectric strength test is performed by using a special tool that can inject a high voltage in oil through two high voltage probes. This tool is too expensive. In this project, a short circuit with the use of flyback transformers designed to work as a special tool as in the theory. This project carried out tests and measurements methods slightly modified from the original method of taking temperature readings of oil after the oil is inject with the high voltage. The original method is by measuring the breakdown voltage. As all know, equipment for high voltage measurement is expensive. So, the measurement method was modified to achieve the objectives of this project. Modifications made are based on theories that have been studied. These tests performed on the original oil and mixed oil and moisture. After doing testing, the oil temperature was found that take too long time to increase and this causes make it less efficient. This is caused by the flyback transformer output voltage is small and the resulting spark is also small and not sufficient to heat the oil in a beaker. So, a little more varied testing method has be done to make oil temperature readings increase more easily. The oil is heated by using a solder that is based on the theory of the heaters warming. This method is effective enough to get a reading of the oil temperature rise for determine the oil dielectric strength test. The following are the results of tests conducted: Based on the two graphs obtained, it can found that the pure oil temperature increased sharply compared to the mixture of oil and moisture which has a lower increasing temperature rate. Theoretically, a mixture of oil and water are two different forms of chemical properties. So, the dielectric strength of the two liquids is different and causing the temperature increase rate of the mixture is slow. Thus, the dielectric strength can determine by this test. Hence, it also can determine that the transformer oil is purely substance or mix with other properties. CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 5.1 Introduction This chapter discusses the conclusions that can be made based on the results obtained and the method of solution which has been done to solve the problems faced in completing this project. Some suggestions are also described in this chapter for continued research on this project in future. 5.2 Conclusion In conclusion, this project partially achieves the objectives and scopes of the project. From this project, a small circuit with suitable electronic components can be designed to generate the output voltage higher than the input voltage by generate the spark and the reading of the measurement system can also be done using commercial off-the-shelf (COTS) equipments. This shows that a measuring instrument for dielectric strength of transformer oil can be designed with more simple and cheaper than existing equipments. However, there are some constraints and limitations of the circuit that have been built as a means of testing such as producing a small spark as the small output voltage and the electronic component parts can not last long and become hot due to the feedback response voltage of the flyback transformer. Measurement of temperature readings is also unstable, while the reading for high-voltage output cannot be taken with common measuring tools. Later in, some of suggestions and recommendations to be considered to improve this project that has been carried out for the further research. 5.3 Recommendations Some recommendations can be given to meet the needs for further research on this project in the future. The recommendations are as follows: a) Produce greater spark The circuit has been designed in this project can be improved further by using electronic components that are better suited to produce a larger spark as the output voltage is more higher. The use of flyback transformer also must being suitable to the circuit that will be designed for the great ratio. b) Good electronic components The electronic components that will being use in the circuit for the future research must have a good quality and can function longer due to the feedback response of flyback transformer. The most important thing is the use of electronic components used must be in accordance with the proper values. c) Transformer oil testing equipment A dynamic testing device can be designed and not just focus on the measurement of oil temperature and dielectric strength tests where the results of the oil quality is more precise and clear. d) Appropriate measurement tools Appropriate measurement tools should be used to facilitate the taking of appropriate reading can be done while ensuring that the readings taken are accurate and stable e) Equipment and laboratory facilities Equipment and laboratory facilities are based is crucial for carrying out project work related to the high voltage and electrical power. This is very important to ensure personal safety and equipment while doing the work of testing and training.
Wednesday, May 6, 2020
Reasons Behind the Fall of Rome, Mohenjo Daro and the...
Everything has itââ¬â¢s falling point, you do, Rome did, Mohenjo Daro did, as did the fictional society of Unwind, everything falls at some point. The falling of societies is common, every society ever has fallen and has yet to fall. Societies fall due to corrupt government, overuse of resources and citizen revolts. Rome, Mohenjo Daro and Unwind fell due to those reasons. Societies can fall for a number of reasons, such as corrupt leaders or a corrupt government in general. Of all things corrupt government in general is pretty common, just think of Rome, or the fake society of Unwind. In the book Unwind the government was corrupt for a number of reasons, such as the ââ¬Å"unwindingâ⬠of children (unwinding is pretty much taking a teenagerââ¬â¢s guts out, if their parents deem them unworthy to live life, their body parts go to people who need it). ââ¬Å"However between the ages of thirteen and eighteen a parent may retroactively ââ¬Å"abortâ⬠a childâ⬠¦ on the c ondition that the childââ¬â¢s life doesnââ¬â¢t ââ¬Å"technicallyâ⬠end.â⬠A war known as the Heartland War was fought and forced them to do this ââ¬Å"unwindingâ⬠. Because of this ââ¬Å"unwindingâ⬠it led to revolts and in the end the society fell. The government of ancient Rome was completely corrupt once the dictatorship came to power. Because of Julius Caesar this happened, he was a good leader but he led a long line of terrible dictators. ââ¬Å"The frightened Senate named Caesar dictator for life.â⬠Eventually Caesar was killed but there were plenty dictators that
Australian Industrial Relations Commission â⬠Myassignmenthelp.Com
Question: Discuss About the Australian Industrial Relations Commission? Answer: Introduction The Fair Work Act 2009 introduced the Fair Work Commission that started its operations on 1 July 2009 (Fair Works commission, 2017). The Fair Work Commission has been formed to operate as a successor of Australian Industrial Relations Commission. The functions of the department include fixating many factors such as industrial awards, minimum wage, resolving disputes, claim handling and enterprise agreements. The aim of the body is to formulate an organized system that can regulate industrial relations in Australia. The authority and control of the body extends to setting minimum wages, approval of business agreements, tribunal awards, resolving disputes among the employees, evaluating the agreements through tests and handling industrial bargaining and actions. BOOT is better off overall test that is being conducted by the Fair Work Commission in order to approve the agreement between employers and employees within an industry. The agreement lays out the terms and conditions that are to be followed by both employees and employers at the workplace. Aim The large organizations try to exploit employees in order to reduce the price of their products and offer the highest level of services to their consumers. This results in the harassments and oppression of the employees that could have severe consequences on the mental and physical health of the workers. Discrimination is one of the most common activities that have been witnessed in many of supermarket stores and retail stores and reason for that is the innocent and gullible foreign workers fall prey to the employers of elephantine organization and then suffer under harsh working conditions. The aim of the report is to analyze the concept of BOOT in an industry through the cases of Coles Supermarket and HM. The cases of Coles and HM would be analyzed in order to understand the significance of BOOT within the industry and workplace. The study of the report is limited to the country of Australia and would not consider the impact of the agreement outside the country. Scope According to the Fair Work Act of 2009, the Commission would only approve the agreement if every award of the agreement satisfies the Commission. The Coles Supermarket was faced with the challenge of one of its agreement being rejected by the commission regarding the wages paid to the employees (Mare Forsyth, 2016). The agreement received a great response from most of the employees of the Coles. The agreement was rejected on the grounds that it did not cover every aspect of employee award and some conditions were more advantageous and some conditions were less favorable as compared to the award (Tredwell, 2016). Now the Fair Work Commission raised the concern that the agreement failed better off overall test. Another giant Swedish retail chain has been facing the same challenge. The company covered around 1200 employees under the agreement and was paying them even less than the minimum wages as per the industry standards (Hannan, 2017). Another slander faced by the giant retail chain was the clause of working hours for the employees and the Commission waved it off (Marin-Guzman, 2017). The organization has been consistently thriving to satisfy the commission and approve its agreement under the better off overall test. The Ship Distributive and Allied Employees Association (SDA) has been trying to negotiate over the agreement to develop a new deal that offers fair work pay and favorable working conditions for the employees. Thus, the report would make an attempt to analyze the concept of BOOT by discussing its pros and cons for both the organizations. Concept and Definition The business agreements are created for the employees and employers at an industrial level. The guidelines that prescribe the conduct and behavior of the employees are being decided by the Fair Work Commission that is called collective agreement. The Fair Work Commission of Australia is responsible for conveying the complete gathered data related to the process of decision making in a business. The Fair Work Commission of Australia evaluates the gathered information effectively in order to pass the proposal that has been developed by the Fair Work Commission of Australia. Another major role of Fair Work Commission is to handle the disputes arising between employers and employees regarding the terms and conditions that have been proposed in the agreement. These types of agreements are being created when one or more employers are involved and there are more than two employees in the organization. The enterprise agreement provides assurance that all the terms and conditions of employmen t have been met by the industry including minimum wages and award of industry. The FWC has the complete authority to amend any laws of the agreement as per the requirement of the organization or the industry. The Fair Work Commission has created terms and conditions that encompasses the following components: Ensuring minimum wages of the employees. Providing healthy work conditions including feasible number of hours, proper lunch breaks and overtime allowance to the employees. Consultative proceedings. Effective management of the disputes within an enterprise or industry. The authority must present reasonable arguments for deducting the salaries of the employees in case it is done deliberately (Westacott, 2017). The Fair Work Commission is responsible for ensuring that the employees within an industry are not being exploited or oppressed and do not face the problem of discrimination within the organization (Fair Work, 2017). The body is responsible for formulating agreement that protects the rights of employers and employees. Once the agreement for the business has been formulated, it has to go through an approval process that is decided on the basis of type of agreement as being developed by the FWC. An agreement could be of three types including single enterprise agreement, Greenfield agreements and multi enterprise agreement. Single Enterprise Agreements A single agreement could have involved one or more than one employers (Fair Work, 2017). This could be illustrated by the example of franchise in which cooperation is of utmost concern. Now these employers have single minded interest according to the fair work commission of Australia. Multi Enterprise Agreements Multi enterprise agreements are being developed with the intention of involving two or more employers (Fair Work, 2017). The employers are not focused towards a single interest and also have diversified opinions on the prescribed conditions of the industrial tribunal. Greenfield Agreements Greenfield agreements concept is derived from multi enterprise agreements and single enterprises agreements (Fair Work, 2017). A new enterprise or occupations is being formed here and the employers aim to develop the purpose of the organization before they hire the employees. The Fair Work Commission approves the formulated agreement through the bargaining and negotiation process. The FWC takes strict measures during the approval of the process to ensure that all the terms and conditions have been understood by the employer. The employer must also be able to visualize the impact of the terms and conditions that have been proposed by the body. Further, the agreement must be presented to the employees after the employers have shown their consent of the agreement (McPhail, Jerrard, Southcombe, 2015). An agreement could include the guidelines that determine the relationship of the employer and employees. The agreement also deals with the situations that could have an impact on the relationship of employer and employees. It covers the issue of salary deduction that has been deliberately carried out by an authority. Benefits of BOOT The BOOT protects the rights of the employees by ensuring the following factors: Minimum Wages: The employees are entitled to receive minimum wages when they are working for any organization. The employers tend to deliberately offer wages less than the minimum wages to the employees to increase their profitability. The BOOT test conducted by Fair Commission of Australia ensures that the employees are entitled to minimum wages in the industry and are not being exploited by the employers. Employees have the right to receive minimum wages when they are working for any organization and these rights must be protected. Thus, the Fair Work Commission sets the appropriate terms and conditions for the employers that prohibits them from depriving the employees from their basic human rights by ensuring fair work pay system in the organization. The bench of Fair Commission rejected the agreement of Coles on the basis of that it did not benefit the workers financially and deprived them off their basic human rights of fair pay. Healthy Work Conditions: The employees have the complete right to receive favorable work conditions that do not affect their health. The large organizations such as Coles and HM employee the employees under the illusion of giving them all the facilities along with healthy work environment. Thus, in such a scenario, Fair Work Commission become active though its condition that the employees are entitled to work under favorable work conditions and prescribed the maximum limit of working hours so as to not harm the health of the workers. The employees also have the right to receive timely lunch breaks and tea breaks from their prescribed duties. Further, in case the employees work beyond a certain time limit then they are entitled for the overtime allowances. One of the agreement proposed by HM was dismissed by the President of Fair Work Commission on the grounds that it did not provide the workers with the sufficient break time and also did not contain any clause for overtime allowance (SDA, 2017). Consultative Proceedings: The process protects the rights of the employees through a defined process that enables the employees to present themselves in a dispute. When Coles did not include this factor in its agreement, it was dismissed by the full bench of Fair Work Commission (Winckworth, 2016). Conflict Management: A dispute is likely to arise within an organization that could create chaos among the employees. This has a huge impact on the productivity of the organization and also influences the environment of the workplace. Thus, the Fair Work Commission aims to resolve any disputes that could possible arise at the workplace. The body ensures that the issue is being handled effectively through mutual understanding among the employees. Coles did not include this clause in its agreement for which the complete agreement was rejected by the Commission (Winckworth, 2016). Deliberate Deductions: The employers sometime deliberately deduct the wages of the employees. According to the rulings of the Fair Work Commission, if authority intentionality deducts the basic salary of the employee, then he/she has to present reasonable argument for the same. When Coles proposed agreement failed to provide any clause stating this condition, it was dismissed by the bench of Commission (Winckworth, 2016) Thus, the BOOT aims to protect the rights of the employers and employees and bring both the parties on a common platform by laying out terms and conditions that are agreed by both parties. It also provides security to the gullible workers that would have been otherwise exploited by the employers. Concerns With BOOT In spite of strict approval process being developed by the Fair Work Commission, there are some glitches of better off overall test. The test fails to consider the certain scenarios due to which those agreements are also being passed by the Fair Work Commission that do not aim to provide protection to the rights of the employees. The real life examples of Coles Supermarket and HM retail chain have been illustrated in order to gain an insight of the challenges that the test poses for the workers. Recently, one of the deals of Coles was approved by the Fair Work Commission that had a huge impact on the lives of about forty three thousand employees. The deal simply approved the clause of paying wages below the minimum level to around forty thousand workers (Collier, 2016). The Commission was misled by a statutory declaration and then reviewed the deal for closure examination. According to the sources, Coles has been slandered with underpaying its workforce by an amount of approximately $100 million every year (Collier, 2016). Further, the retail chain has also been able to save itself from the complaints about penalty rates. The Coles have been criticized for its double facet statements. The agreement of the company did not cover the award for all the employees and it was discovered after an interview with the employees. Further, Shoppies union has also been supporting the Coles through its diplomatic statements. The union also claimed that the Commission would be using the test through a new methodology. This is completely preposterous as the test is always applied for every worker and not for a workforce. The organizations are never allowed to give the excuse that some workers are being paid higher than minimum wages and the rest would be paid below the minimum wages (Collier, 2016). The above concern has affected the lives of numerous workers who are being paid an amount lesser than the minimum wages at Coles. Instead of simply canceling the deal, the Commission has been trying to clarify its decision to approve the test that was not favorable for the workers. HM has also been found to be involved with dodgy deals with the Fair Work Commission in terms of claiming that its terms and conditions pass better off overall test. The giant retail chain has been thriving to increase its profit by reducing its cost of products. The company has been alleged with a track record of unethical behavior (Amieu Newcastle, 2017). SDA has completely supported the mammoth retail chain to continue its underpaying policy for the workers. The company has also been accused of providing unfavorable conditions for the employees due to which many have even died. Fair Work Commission was able to assess the components of HMs agreement quite later to find out that the company does not abide by major of the tests components. Recommendations After investigating the case studies of Coles HM, it can be construed that the Fair Work Commission needs to bring forth some necessary changes that offer mutual consent among the employers and employees so that the employers are also not being pressurized by the terms and conditions of the Commission. The proposed recommendation for the Commission is that they should try to incorporate flexibility terms for an industry or occupation. The flexibility term would encourage to form an agreement that emphasize on the individual needs of employers and employees (Fair Work, 2017). The flexibility term would enable an employee to give the freedom to be able to meet the needs of employee as per the requirement of the situation. Thus, the agreement would now consider the genuine need of the employer. Flexible terms and conditions would encourage the employers to create more fair terms and conditions that provide favorable working conditions and fair work pay for the employees. The employers would not pretend anymore that the components of their agreement pass the better off overall test. Instead they would try to make sure that they strictly follow the prescribed terms and conditions of the body and do deliberately violate any laws of Commission. Conclusion The report has successfully analyzed the concept of BOOT by discussing the case studies of Coles and HM. In the case it was found that the large and giant retail chains often pretend that they adhere to the laws and policies of Fair Work Commission. After scrutinizing the cases of Coles and HM, the companies have been found to incorporate policies that goes against the major policies of the body. Coles and HM were found to underpay their simpleton workers deliberately with the aim to increase their profitability by reducing their overall cost. Coles was also found to not provide adequate lunch breaks to the workers and had very unfair and unethical policies that violated the rights of workers. Thus, the report specifically illustrated the role of Fair Work Commission in the approval of the agreements of these retail chains. Flexibility terms and conditions was the proposed recommendations for the Commission through which reform and amendments could be made and the conditions of these workers could be improved. References Amieu Newcastle. (2017). SDA Welcomes Fashion Retailer HM To Australia By Surrendering Wages And Conditions. Retrieved from: https://newcastle.amieu.asn.au/sda-hm-wages-conditions/ Collier, G. (2016). Coles looks like new Cleanevent and workers look the losers. The Australian. Retrieved from: https://www.theaustralian.com.au/opinion/columnists/grace-collier/coles-looks-like-new-cleanevent-and-workers-look-the-losers/news-story/046badcd570a41f5e14a0b4effa80ce5 Fair Work. (2017). Use of individual flexibility arrangement. Retrieved from: https://www.fairwork.gov.au/how-we-will-help/templates-and-guides/best-practice-guides/use-of-individual-flexibility-arrangements Fair Works commission. (2017). Fair Work Commission. Retrieved from: https://www.australia.gov.au/directories/australia/fwc. Hannan, E. (2017).Swedish fashion giant gets BOOT from FWC. Retrieved from: https://www.theaustralian.com.au/national-affairs/industrial-relations/swedish-fashion-giant-gets-boot-from-fwc/news-story/4104185a3defd23942bbabd363adda51 Mare, N.L., Forsyth, A. (2016). The Coles Agreement Decision And What It Means For Enterprise Bargaining. Retrieved From: Http://Www.Corrs.Com.Au/Publications/Corrs-In-Brief/The-Coles-Agreement-Decision-And-What-It-Means-For-Enterprise-Bargaining/ Marin-Guzman, D. (2017). HM penalty rates trade-off refused amid retail expansion. Retrieved from: https://www.afr.com/news/policy/industrial-relations/hm-penalty-rates-tradeoff-refused-amid-retail-expansion-20170117-gtsy7g Tredwell, K. (2016). Major Australian retailer struggles to give employees better off overall under new agreement. Retrieved from: https://www.hallandwilcox.com.au/major-australian-retailer-struggles-to-give-employees-better-off-overall-under-new-agreement/ McPhail, R, Jerrard, MSouthcombe, A. (2015). Employment relations: an integrated approach. Australia: Cengage Learning. SDA. (2017). SDA Successfully Opposes unfair HM Agreement. Retrieved from: https://www.sda.org.au/sda-successfully-opposes-unfair-hm-agreement/ Westacott, J. (2017). Enterprise bargaining on the brink. Retrieved from: Australian Financial Review. Winckworth, J. (2016). Coles the BOOT needs to fit all feet (not just the majority). Retrieve from: https://www.claytonutz.com/knowledge/2016/august/coles-the-boot-needs-to-fit-all-feet-not-just-the-majority
Subscribe to:
Posts (Atom)